新能源材料研究所>>

凌涛 教授

新能源材料研究所

电话:无

Email:lingt04@tju.edu.cn

研究所:新能源材料研究所

工作经历

2017.10-至今 天津大学材料学院 教授

2015.10-2016.10 澳大利亚阿德莱德大学 访问学者

2013.06-2017.10 天津大学材料学院 副教授

2009.10-2013.06 天津大学材料学院 讲师

教育经历

2004.09-2009.07 清华大学材料系 博士学位

2000.09-2004.07 电子科技大学微固学院 学士学位

研究方向

• 新型能源转换材料(电催化、光电催化)

• 新型能源存储材料(金属-空气电池、太阳能电池、超级电容器)

承担项目

 国家自然科学基金优秀青年基金项目,催化新材料表面原子结构调控和性能研究,517221032018.01.01-2020.12.31,主持

 天津自然科学基金杰出青年基金项目,金属与载体间电子相互作用对负载型金属电催化剂性能的调控,19JCJQJC619002019.10-2023.09,主持

 国家自然科学基金面上项目,“金属/氧化物界面“协同”活性位点——突破贵金属析氧催化剂活性及稳定性的限制,520712312021.01-2024.12,主持

 国家自然科学基金面上项目,活性气体与金属原子复合团簇气相自组装合成无支撑原子级厚度活泼金属纳米片,515711492016.01-2019.12,主持

 国家自然科学基金青年项目,三维有序密堆量子点太阳能电池的构建及电荷传输机制研究,511021762012.01-2014.12,主持

 天津市应用基础与前沿技术研究计划一般项目,CdS反蛋白石结构应用于高效率无偏压光电催化制氢,15JCYBJC182002015.04-2018.03,主持

 天津市应用基础与前沿技术研究计划一般项目,新型高效蜂窝状CdS量子点太阳能电池的研究,11JCYBJC020002011.04-2014.03,主持

标志性成果

开发气相金属离子交换新方法,构建多种催化材料体系“宏观-微观-原子”跨尺度多级结构;调控电解水制氢材料活性晶面、晶格应力、缺陷和掺杂等表界面原子结构,揭示材料表界面原子/电子结构和催化性能之间关联,突破催化材料活性和稳定性限制;创造催化材料和电解液界面分子尺度的反应微环境,实现高效稳定的天然海水电解制氢。以第一/通讯作者在Nature EnergyNature Communications (3)Science AdvancesAdvanced Materials (7)Angewandte Chemie (3)Nano LettersAdvanced Functional MaterialsNano Energy等期刊发表论文50余篇,10篇入选ESI高被引论文,被ScienceNature Energy选为研究亮点。


学术奖励

2017年获国家自然科学基优秀青年科学基金

2019年获天津市自然科学基杰出青年科学基金

2017年入选北洋青年学者计划

2015年获天津市自然科学一等奖(排名3)

2009年获清华大学一等奖学金

2004年入选四川省优秀毕业生

2004年入选电子科技大学杰出学生

代表性论文

[1] Guo J, Zheng Y, Hu Z, Zheng C, Mao J, Du K, Jaroniec M, Qiao S Z, Ling T*. Direct seawater electrolysis by adjusting the local reaction environment of a catalyst, Nat. Energy 2023, 8, 264-272 [Highlighted by Science].

[2] Liu H, Ling T*. Monitoring in situ evolution of electrochemical materials. Joule 2023, 7, 861-862.

[3] Yang Y, Hu C, Shan J, Cheng C, Han L, Li X, Wang R, Xie W, Zheng Y, Ling T*. Electrocatalytically activating and reducing N2 Molecule by tuning activity of local hydrogen radical. Angew. Chem. Int. Ed. 2023, 62, e202300989.

[4] Du K, Zhang L, Shan J, Guo J, Mao J, Yang C, Wang C, Hu Z, Ling T*. Interface engineering breaks both stability and activity limits of RuO2 for sustainable water oxidation, Nat. Commun. 2022, 13, 5448 [Selected as 50 best papers in Catalysis on Nature Communications].

[5] Wang R, Zhang L, Shan J, Yang Y, Lee J, Chen T, Mao J, Zhao Y, Yang L, Hu Z, Ling T*. Tuning Fe spin moment in Fe–N–C catalysts to climb the activity volcano via a local geometric distortion strategy, Adv. Sci.  2022, 9, 2203917.

[6] Zhao E, Du K, Yin P, Ran J, Mao J, Ling T*, Qiao S Z. Advancing photoelectrochemical energy conversion through atomic design of catalysts. Adv. Sci. 2022, 9, 2104363.

[7] Ling T*, Jaroniec M, Qiao S Z. Recent progress in engineering the atomic and electronic structure of electrocatalysts via cation exchange reactions. Adv. Mater. 2020, 32, 2001866.

[8] Mu C, Mao J, Guo J, Guo Q, Li Z, Qin W, Hu Z, Davey K, Ling T*, Qiao S Z. Rational design of spinel cobalt vanadate oxide Co2VO4 for superior electrocatalysis. Adv. Mater. 2020, 32, 1907168.

[9] Yang Y, Zhang L, Hu Z, Zheng Y, Tang C, Chen P, Wang R, Qiu K, Mao J, Ling T*, Qiao S Z. The crucial role of charge accumulation and spin polarization in activating carbon-based catalysts for electrocatalytic nitrogen reduction. Angew. Chem. Int. Ed. 2020, 59, 4525 [VIP paper].

[10] Ling T*, Zhang T, Ge B, Han L, Zheng L, Lin F, Xu Z, Hu W-B, Du X-W, Davey K, Qiao S Z. Well dispersed nickle and zinc tailored electronic structure of transition metal oxide for highly active alkaline hydrogen evolution reaction. Adv. Mater. 2019, 31, 1807771 [ESI highly cited paper].

[11] Ling T, Da PF, Zheng XL, Ge BH, Hu ZP, Wu MY, Du XW, Hu WB, Jaroniec M, Qiao S Z. Atomic-level structure engineering of metal oxides for high-rate oxygen intercalation pseudocapacitance. Sci. Adv. 2018, 4, eaau6261 [Highlighted by Nature Energy].

[12] Li Y-J, Cui L, Da P-F, Qiu K-W, Qin W-J, Hu W-B, Du X-W, Davey K, Ling T*, Qiao S-Z. Multi-scale structural engineering of Ni-doped CoO nanosheets for zinc-air batteries with high-power density. Adv. Mater. 2018, 30, 1804653.

[13] Zhang T, Wu M-Y, Yan D-Y, Mao J, Liu H, Hu W-B, Du X-W, Ling T*, Qiao S Z. Engineering oxygen vacancy on NiO nanorod arrays for alkaline hydrogen evolution. Nano Energy 2018, 43, 103-109 [ESI highly cited paper].

[14] Ling T, Yan D Y, Wang H, Jiao Y, Hu Z P, Zheng Y, Zheng L R, Mao J, Liu H, Du X W, Jaroniec M, Qiao S Z. Activating cobalt (II) oxide nanorods for highly efficient electrocatalysis by strain engineering. Nat. Commun. 2017, 8, 1509 [ESI highly cited paper].

[15] Meng C, Ling T*, Ma T Y, Wang H, Hu Z P, Zhou Y, Mao J, Du X W, Jaroniec M, Qiao S Z. Atomically and electronically coupled Pt and CoO hybrid nanocatalysts for enhanced electrocatalytic performance. Adv. Mater. 2017, 29, 1604607 [ESI highly cited paper].

[16] Ling T, Yan D Y, Jiao Y, Wang H, Zheng Y, Zheng X L, Mao J, Du X W, Hu Z P, Jaroniec M, Qiao S Z. Engineering surface atomic structure of single-crystal cobalt () oxide nanorods for superior electrocatalysis. Nat. Commun. 2016, 7, 12876 [ESI highly cited paper].

[17] Zheng X L, Song J P, Ling T*, Hu Z P, Yin P F, Davey K, Du X W, Qiao S Z. Strongly coupled Nafion molecules and ordered porous CdS networks for enhanced visible-light photoelectrochemical hydrogen evolution. Adv. Mater. 2016, 28, 4935-4942 [Back inside cover].

[18] Ling T, Wang J J, Zhang H, Song S T, Zhou Y Z, Zhao J, Du X W. Freestanding ultrathin metallic nanosheets: materials, synthesis, and applications. Adv. Mater. 2015, 27, 5396-5402.

[19] Ling T, Kulinich S A, Zhu Z L, Qiao S Z, Du X W. Highly conductive CdS inverse opals for photochemical solar cells. Adv. Funct. Mater. 2014, 24, 707-715.

[20] Ling T, Xie L, Zhu J, Yu H M, Ye H Q, Yu R, Cheng Z Y, Liu L, Yang G W, Cheng Z D, Wang Y J, Ma X L. Icosahedral face-centered cubic Fe nanoparticles: Facile synthesis and characterization with aberration-corrected TEM. Nano Lett. 2009, 9, 1572-1576.