先进金属材料研究所>>

何芳 讲席教授

国家高层次人才计划获得者

Email:fanghe@tju.edu.cn

研究所:先进金属材料研究所

教育背景:

· 2003.10-2006.03天津大学材料学院 材料学专业 博士研究生

· 2001.09-2003.09天津大学材料学院 材料学专业 硕士研究生

· 1997.09-2001.07天津大学材料学院 材料学专业 大学本科

工作经历:

· 2006.3-2008.6天津大学材料学院 讲师

· 2008.6-2016.11天津大学材料学院 副教授

· 2011.10-2012.12美国加州大学洛杉矶分校(UCLA)国家公派访问学者,从事纳米功能材料研究

· 2016.11至今 天津大学材料学院 教授、博导

· 2019.1-2024.4先后担任天津大学学位办主任、研究生院职务

· 2024.4至今天津大学教务处处长

研究方向

·研究领域:

(1) 功能型纳米复合结构设计及可控制备

(2) 金属微纳结构设计、制备及功能应用

(3)纳米催化及电磁防护材料

·讲授课程:

固态相变、复合材料原理、复合材料创新设计

承担项目

· (1)热力氧耦合作用下有机-无机复合气凝胶梯度微纳结构设计制备及其红外/雷达隐身协同调控机制研究,国家自然科学基金重点项目,2025.1-2028.12

· (2)多金属氧化物光阳极原位阳离子选择性置换调控及载流子输运优化机制研究,国家自然科学基金面上项目,2022.1-2025.12

· (3)2D-硫化铼/2D-二氧化钛异质结的结构设计、界面调控及其光催化性能研究,国家自然科学基金面上项目,2020.1-2023.12

· ·(4)MoS2/金属-有机框架材料(MOFs)/g-C3N4纳米复合结构的构建、形成机制及光催化性能研究,国家自然科学基金面上项目,2016.1-2019.12

· (5)广谱光吸收的上转换发光增强3C-SiC纳米复合结构设计及光解水研究,国家自然科学基金面上项目,2014.1-2017.12

· ·(6)(Ge+Si)/TiO2量子点混杂复合材料的制备及其复合敏化机理探索研究,国家自然科学基金青年基金项目,2009.1-2011.12

· ·(7)高铁转向架用高性能结构-阻尼复合材料设计制备及应用,天津市自然科学基金重点项目,2016-2019

· ·(8)纳米管/纳米孔多尺度梯度TiO2涂层TLM钛合金支架研究,天津市自然科学基金重点项目,2011-2013

标志性成果

主要学术成就、获奖及荣誉:

1.国家高层次人才计划,中组部、教育部,2024

2.天津市三八红旗手,天津市妇女联合会,2023-2024年度

3.宝钢教育奖--优秀教师奖,2014年

4.天津市自然科学奖,碳纳米相增强金属基复合材料的基础研究,一等奖,第四获奖人,2023

5.国家教学成果二等奖,需求导向、创新牵引、开发发展的高层次卓越人才培养综合改革探索与实践,第三获奖人,2022

6.天津市教学成果一等奖,新时代高层次创新人才导辅协同培养机制改革与实践,第一获奖人,2022

7.辽宁省教学成果一等奖,强化学生工程能力的“三位一体”培养模式探索与实践,第四获奖人,2018

8.国家级一流本科课程,固态相变,课程负责人(团队主要成员:赵乃勤、何春年),2023

发表文章、专利、专著(代表作):

编写专著与教材:

1.赵乃勤、何芳、师春生主编,合金固态相变,化学工业出版社,2024

发表主要学术论文(近五年):(*为通信作者)

[1] Song K, Liu H, Chen B,Gong C, Ding J, Wang T, Liu E, Ma L, Zhao N*, He F*. Toward Efficient Utilization of Photogenerated Charge Carriers in Photoelectrochemical Systems: Engineering Strategies from the Atomic Level to Configuration[J]. Chemical Reviews, 2024, 124(24): 13660-13680.

[2]&nbspSui S, Xie H, Chen B*,Wang T, Qi Z, Wang J, Sha J, Liu E, Zhu S, Lei K, Zheng S, Zhou G, He C, Hu W, He F*, Zhao N. Highly Reversible Sodium-ion Storage in A Bifunctional Nanoreactor Based on Single-atom Mn Supported on N-doped Carbon over MoS2Nanosheets[J]. Angewandte Chemie International Edition, 2024, 63(43): e202411255.

[3]&nbspDing J, Liu H, Gong C,Cui J, Zhang Y, Cong H, He C, Zhao N, Shi C, He F*. Dual-type heterogeneous interface design enables customized tuning of dielectric parameters of multifunctional, lightweight, flexible absorbers for broadband electromagnetic wave absorption[J]. Nano Energy, 2024, 131: 110284.

[4]&nbspGong C, Ding J, Wang C,Zhang Y, Cong H, Liu H, Guo Y, Song K, Shi C, He F*. Utilizing Se vacancies as electronic traps to synergize impedance matching and dipole polarization with ultrathin strategy to boost Fe-Se electromagnetic wave absorption[J]. Chemical Engineering Journal, 2024, 480: 147793.

[5] Weng H, Liu H, Yang G,Ding J, Gong C, Fu Y, Cui J, Ma L, He C, Zhao N, He F*. Construction of 2D/2D NH2-TiO2/ReS2molecular-connected heterojunction to achieve selective carrier transport for photocatalytic hydrogen production[J]. Chemical Engineering Journal, 2024, 492: 151687.

[6]&nbspCong H, Liu H, Ding J,Fu Y, Cui J, Gong C, Wang C, Zhang Y, He C, Zhao N, Shi C, He F*. Construction of hierarchical yolk-shell Fe@SiO2@NC composites with dual impedance matching layers and dual built-in electric fields for efficient electromagnetic wave absorption[J]. Journal of Materials Science & Technology, 2024, 225: 297-308.

[7]&nbspChen B, Sui S, He F*,He C, Cheng H, Qiao S*, Hu W*, Zhao N. Interfacial engineering of transition metal dichalcogenide/carbon heterostructures for electrochemical energy applications[J]. Chemical Society Reviews, 2023, 52(22): 7802-7847.

[8]&nbspSong K, Hou H*, Zhang D, He F*, Yang W*. In-situ cation-exchange strategy for engineering single-atomic Co on TiO2photoanode toward efficient and durable solar water splitting[J]. Applied Catalysis B: Environmental, 2023, 330: 122630.

[9]&nbspDing J, Shi R, Gong C,Wang C, Guo Y, Chen T, Zhang Y, Cong H, Shi C, He F*. Defect Engineering Activates Schottky Heterointerfaces of Graphene/CoSe2Composites with Ultrathin and Lightweight Design Strategies to Boost Electromagnetic Wave Absorption[J]. Advanced Functional Materials, 2023, 33(48): 2305463.

[10] Gong C, Ding J, Wang C,Zhang Y, Guo Y, Song K, Shi C, He F*. Defect-induced dipole polarization engineering of electromagnetic wave absorbers: Insights and perspectives[J]. Composites Part B: Engineering, 2023, 252: 110479.

[11]&nbspChen T, Li B, Song K,Wang C, Ding J, Liu E, Chen B, He F*. Defect-activated surface reconstruction: mechanism for triggering the oxygen evolution reaction activity of NiFe phosphide[J]. Journal of Materials Chemistry A, 2022, 10(42): 22750-22759.

[12]&nbspSong K, He F*, Zhou E,Wang L, Hou H*, Yang W*. Boosting solar water oxidation activity of BiVO4photoanode through an efficient in-situ selective surface cation exchange strategy[J]. Journal of Energy Chemistry, 2022, 68: 49-59.

[13]&nbspWang Y, Shi R, Song K,Liu C, He F*. Constructing a 2D/2D interfacial contact in ReS2/TiO2via Ti-S bond for efficient charge transfer in photocatalytic hydrogen production[J]. Journal of Materials Chemistry A, 2021, 9(41): 23687-23696.

[14]&nbspSun Q, Zhang B, Diao L,Chen B, Song K, Ma L, He F*. Engineering the electronic structure of 1T′-ReS2through nitrogen implantation for enhanced alkaline hydrogen evolution[J]. Journal of Materials Chemistry A, 2020, 8(23): 11607-11616.

[15]&nbspZhu S, Li J, Deng X,He C, Liu E, He F*, Shi C, Zhao N*. Ultrathin-Nanosheet-Induced Synthesis of 3D Transition Metal Oxides Networks for Lithium Ion Battery Anodes[J]. Advanced Functional Materials, 2017, 27(9): 1605017.